Targeting of NAD metabolism in pancreatic cancer cells: potential novel therapy for pancreatic tumors.

نویسندگان

  • Claudia C S Chini
  • Anatilde M Gonzalez Guerrico
  • Veronica Nin
  • Juliana Camacho-Pereira
  • Carlos Escande
  • Maria Thereza Barbosa
  • Eduardo N Chini
چکیده

PURPOSE Here, we describe a novel interplay between NAD synthesis and degradation involved in pancreatic tumor growth. EXPERIMENTAL DESIGN We used human pancreatic cancer cells, both in vitro (cell culture experiments) and in vivo (xenograft experiments), to demonstrate the role of NAD synthesis and degradation in tumor cell metabolism and growth. RESULTS We demonstrated that pharmacologic and genetic targeting of Nampt, the key enzyme in the NAD salvage synthesis pathway, inhibits cell growth and survival of pancreatic cancer cells. These changes were accompanied by a reduction of NAD levels, glycolytic flux, lactate production, mitochondrial function, and levels of ATP. The massive reduction in overall metabolic activity induced by Nampt inhibition was accompanied by a dramatic decrease in pancreatic tumor growth. The results of the mechanistic experiments showed that neither the NAD-dependent enzymes PARP-1 nor SIRT1 play a significant role on the effect of Nampt inhibition on pancreatic cancer cells. However, we identified a role for the NAD degradation pathway mediated by the NADase CD38 on the sensitivity to Nampt inhibition. The responsiveness to Nampt inhibition is modulated by the expression of CD38; low levels of this enzyme decrease the sensitivity to Nampt inhibition. In contrast, its overexpression decreased cell growth in vitro and in vivo, and further increased the sensitivity to Nampt inhibition. CONCLUSIONS Our study demonstrates that NAD metabolism is essential for pancreatic cancer cell survival and proliferation and that targeting NAD synthesis via the Nampt pathway could lead to novel therapeutic treatments for pancreatic cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Systemic Targeted Alpha Radiotherapy for Cancer

Background: The fundamental principles of internal targeted alpha therapy for cancer were established many decades ago.The high linear energy transfer (LET) of alpha radiation to the targeted cancer cellscauses double strand breaks in DNA. At the same time, the short range radiation spares adjacent normal tissues. This targeted approach complements conventional external beam radiotherapy and ch...

متن کامل

Wild Type p53 Gene Transfer Increases Chemosensitivity and Apoptotic Response of PANC-1 Pancreatic Tumor Cell Line

The effect of p53 gene therapy on chemosensitivity and apoptotic response of PANC-1 tumor cells, which express high amount of mutant p53, to cancer chemotherapeutic agents of Etoposide and Doxorubicin was investigated. Comparison of the chemosensitivity of PANC-1 cells to its wild type p53 transfectants showed that wt-p53 expressing transfectants are more sensitive to both Etoposide and Doxorub...

متن کامل

Overcoming chemo/radio-resistance of pancreatic cancer by inhibiting STAT3 signaling

Chemo/radio-therapy resistance to the deadly pancreatic cancer is mainly due to the failure to kill pancreatic cancer stem cells (CSCs). Signal transducer and activator of transcription 3 (STAT3) is activated in pancreatic CSCs and, therefore, may be a valid target for overcoming therapeutic resistance. Here we investigated the potential of STAT3 inhibition in sensitizing pancreatic cancer to c...

متن کامل

Targeting metabolic scavenging in pancreatic cancer.

Pancreatic tumor metabolism is rewired to facilitate survival and growth in a nutrient-depleted environment. This leads to a unique dependence on metabolic recycling and scavenging pathways, including NAD salvage. Targeting this pathway in pancreatic cancer disrupts metabolic homeostasis and impairs tumor growth.

متن کامل

InVivo Loss of Function Screening Reveals Carbonic Anhydrase IX as a Key Modulator of Tumor Initiating Potential in Primary Pancreatic Tumors12

Reprogramming of energy metabolism is one of the emerging hallmarks of cancer. Up-regulation of energy metabolism pathways fuels cell growth and division, a key characteristic of neoplastic disease, and can lead to dependency on specific metabolic pathways. Thus, targeting energy metabolism pathways might offer the opportunity for novel therapeutics. Here, we describe the application of a novel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical cancer research : an official journal of the American Association for Cancer Research

دوره 20 1  شماره 

صفحات  -

تاریخ انتشار 2014